2,011 research outputs found

    3D Face Reconstruction from Light Field Images: A Model-free Approach

    Full text link
    Reconstructing 3D facial geometry from a single RGB image has recently instigated wide research interest. However, it is still an ill-posed problem and most methods rely on prior models hence undermining the accuracy of the recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI) obtained from light field cameras and learn CNN models that recover horizontal and vertical 3D facial curves from the respective horizontal and vertical EPIs. Our 3D face reconstruction network (FaceLFnet) comprises a densely connected architecture to learn accurate 3D facial curves from low resolution EPIs. To train the proposed FaceLFnets from scratch, we synthesize photo-realistic light field images from 3D facial scans. The curve by curve 3D face estimation approach allows the networks to learn from only 14K images of 80 identities, which still comprises over 11 Million EPIs/curves. The estimated facial curves are merged into a single pointcloud to which a surface is fitted to get the final 3D face. Our method is model-free, requires only a few training samples to learn FaceLFnet and can reconstruct 3D faces with high accuracy from single light field images under varying poses, expressions and lighting conditions. Comparison on the BU-3DFE and BU-4DFE datasets show that our method reduces reconstruction errors by over 20% compared to recent state of the art

    Current-flux characteristics in mesoscopic nonsuperconducting rings

    Full text link
    We propose four different mechanisms responsible for paramagnetic or diamagnetic persistent currents in normal metal rings and determine the circumstances for change of the current from paramagnetic to diamagnetic ones and {\it vice versa}. It might qualitatively reproduce the experimental results of Bluhm et al. (Phys. Rev. Lett. 102, 136802 (2009)).Comment: 8 pages, 1 figur

    Probing 3D and NLTE models using APOGEE observations of globular cluster stars

    Full text link
    Hydrodynamical (or 3D) and non-local thermodynamic equilibrium (NLTE) effects are known to affect abundance analyses. However, there are very few observational abundance testsof 3D and NLTE models. We developed a new way of testing the abundance predictions of 3D and NLTE models, taking advantage of large spectroscopic survey data. We use a line-by-line analysis of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra (H band) with the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS). We compute line-by-line abundances of Mg, Si, Ca, and Fe for a large number of globular cluster K giants in the APOGEE survey. We compare this line-by-line analysis against NLTE and 3D predictions. While the 1D-NLTE models provide corrections in the right direction, there are quantitative discrepancies between different models. We observe a better agreement with the data for the models including reliable collisional cross-sections. The agreement between data and models is not always satisfactory when the 3D spectra are computed in LTE. However, we note that for a fair comparison, 3D corrections should be computed with self-consistently derived stellar parameters, and not on 1D models with identical stellar parameters. Finally, we focus on 3D and NLTE effects on Fe lines in the H band, where we observe a systematic difference in abundance relative to the value from the optical. Our results suggest that the metallicities obtained from the H band are more accurate in metal-poor giants. More atomic data and extended self-consistent 3D-NLTE computations need to be made. The method we have developed for testing 3D and NLTE models could be extended to other lines and elements, and is particularly suited for large spectroscopic surveys.Comment: 13 pages, 9 figures, accepted in A&

    Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling

    Full text link
    We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation (neglecting the background contribution) the evolution of a total system subspace is not an exact semigroup for the multi-channel decay, unless the projectors into eigesntates of the reduced evolution generator W(z)W(z) are orthogonal. In this case these projectors must be evaluated at different pole locations zαzβz_\alpha\neq z_\beta. Since the orthogonality relation does not generally hold at different values of zz, for example, when there is symmetry breaking, the semigroup evolution is a poor approximation for the multi-channel decay, even for a very weak coupling. Nevertheless, there exists a possibility not only to ensure the orthogonality of the W(z)W(z) projectors regardless the number of the poles, but also to simultaneously suppress the effect of the background contribution. This possibility arises when the theory is generalized to take into account interactions with an environment. In this case W(z)W(z), and hence its eigenvectors as well, are {\it independent} of zz, which corresponds to a structure of the coupling to the continuum spectrum associated with the Markovian limit.Comment: 9 pages, 3 figure

    The cultural and geopolitical dimensions of nation-building in the Ukraine

    Get PDF
    Ukraine belongs among those young countries where the beginnings of democratisation and nation-building approximately coincided. While the development of nation states in Central Europe was usually preceded by the development of nations, the biggest dilemma in the Ukraine is whether a nation-state programme — parallel to the aim of state-building — is able to bring unfinished nation-building to completion. Ukraine sways between the EU and Russia with enormous amplitude. The alternating orientation between the West and the East can be ascribed to superpower ambitions reaching beyond Ukraine. Eventually, internal and external determinants are intertwined and mutually interact with one another. The aim of the paper is to explain the dilemmas arising from identity problems behind the Ukraine’s internal and external orientation

    Connective neck evolution and conductance steps in hot point contacts

    Full text link
    Dynamic evolution of the connective neck in Al and Pb mechanically controllable break junctions was studied during continuous approach of electrodes at bias voltages V_b up to a few hundred mV. A high level of power dissipation (10^-4 - 10^-3 W) and high current density (j > 10^10 A/cm^2) in the constriction lead to overheating of the contact area, electromigration and current-enhanced diffusion of atoms out of the "hot spot". At a low electrode approach rate (10 - 50 pm/s) the transverse dimension of the neck and the conductance of the junction depend on V_b and remain nearly constant over the approach distance of 10 - 30 nm. For V_b > 300 mV the connective neck consists of a few atoms only and the quantum nature of conductance manifests itself in abrupt steps and reversible jumps between two or more levels. These features are related to an ever changing number of individual conductance channels due to the continuous rearrangement in atomic configuration of the neck, the recurring motion of atoms between metastable states, the formation and breaking of isolated one-atom contacts and the switching between energetically preferable neck geometries.Comment: 21 pages 10 figure

    Quantum interference structures in the conductance plateaus of gold nanojunctions

    Get PDF
    The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus' slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.Comment: 4 pages, 4 figure

    Magnetic flux in mesoscopic rings: Quantum Smoluchowski regime

    Full text link
    Magnetic flux in mesoscopic rings under the quantum Smoluchowski regime is investigated. Quantum corrections to the dissipative current are shown to form multistable steady states and can result in statistical enhancement of the magnetic flux. The relevance of quantum correction effects is supported v ia the entropic criterion. A possible application for a qutrit architecture of quantum information is proposed.Comment: 7 pages, 2 figure

    Quantizing the damped harmonic oscillator

    Full text link
    We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.Comment: 4 pages, no figure

    New H-band Stellar Spectral Libraries for the SDSS-III/APOGEE survey

    Get PDF
    The Sloan Digital Sky Survey--III (SDSS--III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) has obtained high resolution (R \sim 22,500), high signal-to-noise ratio (>> 100) spectra in the H-band (\sim1.5-1.7 μ\mum) for about 146,000 stars in the Milky Way galaxy. We have computed spectral libraries with effective temperature (TeffT\rm{_{eff}}) ranging from 3500 to 8000 K for the automated chemical analy\-sis of the survey data. The libraries, used to derive stellar parameters and abundances from the APOGEE spectra in the SDSS--III data release 12 (DR12), are based on ATLAS9 model atmospheres and the ASSϵ\epsilonT spectral synthesis code. We present a second set of libraries based on MARCS model atmospheres and the spectral synthesis code Turbospectrum. The ATLAS9/ASSϵ\epsilonT (TeffT\rm{_{eff}} = 3500-8000 K) and MARCS/Turbospectrum (TeffT\rm{_{eff}} = 3500-5500 K) grids cover a wide range of metallicity (-2.5 \leq [M/H] \leq ++0.5 dex), surface gravity (0 \leq log gg \leq 5 dex), microturbulence (0.5 \leq ξ\xi \leq 8 km~s1^{-1}), carbon (-1 \leq [C/M] \leq ++1 dex), nitrogen (-1 \leq [N/M] \leq ++1 dex), and α\alpha-element (-1 \leq [α\alpha/M] \leq ++1 dex) variations, having thus seven dimensions. We compare the ATLAS9/ASSϵ\epsilonT and MARCS/Turbospectrum libraries and apply both of them to the analysis of the observed H-band spectra of the Sun and the K2 giant Arcturus, as well as to a selected sample of well-known giant stars observed at very high-resolution. The new APOGEE libraries are publicly available and can be employed for chemical studies in the H-band using other high-resolution spectrographs.Comment: 45 pages, 11 figures; accepted for publication in the Astronomical Journa
    corecore